ORIGINAL ARTICLE CO-EXISTENCE OF CIPROFLOXACIN RESISTANCE IN METHICILLIN RESISTANT *STAPHYLOCOCCUS AUREUS* FROM CLINICAL SAMPLES

Atif A. Patoli, Bushra B. Patoli, Zulifqar A. Laghari*, Taj M. Maachi** Institute of Microbiology, *Department of Physiology, University of Sindh, Jamshoro,

**Department of Medicine, Agha Khan University, Karachi, Pakistan

Background: Ciprofloxacin is a broad-spectrum, fluorinated quinolone antibiotic. It has been successfully prescribed against a variety of bacteria. Though its use was limited to a last resort therapy against complicated infections, however widespread usage has led to the emergence of ciprofloxacin resistance. The current study was planned to evaluate the existence of ciprofloxacin resistance in methicillin resistant and sensitive Staphylococcus aureus from clinical samples. Methods: The clinical S. aureus isolates from wound, blood, urine and nose, were obtained from various labs of Hyderabad over nine months. The methicillin resistant strains were identified by Kirbey baur disc diffusion test using oxacillin (1 µg) discs. The response of Methicillin Resistant S. aureus and Methicillin Sensitive S. aureus strains against 2nd generation flouroquinolone, i.e., ciprofloxacin was demonstrated. Results: A total of 150 S. aureus isolates from various clinical specimens were included in this study. About 14.6 % (n=22) showed resistance against ciprofloxacin while 30% (n=48) were identified as MRSA. About 25% of the Methicillin Resistant S. aureus (MRSA) isolates displayed the co-resistance against ciprofloxacin. Among various specimens the maximum co-resistance was seen in case of blood isolates (37.5%) followed by urine isolates (33.3%). Comparatively, ciprofloxacin resistance was found to be lower in Methicillin Sensitive S. aureus (MSSA) strains (9.1%). Odds Ratio [OR] was calculated to be 0.30 [95% CI=0.12-0.77]. Statistically significant differences (p < 0.05) for ciprofloxacin resistance were seen between MRSA and MSSA. Conclusion: The results suggest a statistically significant increase of ciprofloxacin resistance in Methicillin Resistant S. aureus as compared to Methicillin Sensitive S. aureus in clinical samples.

Keywords: Staphylococcus aureus, Clinical Specimens, Ciprofloxacin, Methicillin Pak J Pysiol 2018;14(2)24-7

INTRODUCTION

The rapid development of antibiotic resistance in bacteria is a global problem and a matter of extensive concern. Currently the known pathogenic bacterial species display antibiotic resistance to at least one commercially available antibiotic.

The Staphylococcus aureus (S. aureus), is a universal pathogen and generally considered as naturally susceptible to nearly every antibiotic that has ever been developed; however, the resistance to almost all kinds of antibiotics commonly employed against S. aureus has now been witnessed.¹ In S. aureus the resistance against beta-lactam antibiotics was witnessed soon after its introduction and the resistance against beta-lactamase resistant beta lactams (methicillin) was reported in 1961.² In Pakistan the resistance to methicillin was first reported in 1989.³ Since then a continuous increase in the Methicillin Resistant S. aureus (MRSA) infections has been reported in Pakistan.⁴ Methicillin Resistant S. aureus generally displays a multiple drug resistance trend and are therefore a serious cause of morbidity and mortality worldwide.⁵ Previously, MRSA infections were known to be hospital acquired; however, the acquisition of MRSA associated infections from community is now a general trend in Pakistan.⁶ Besides vancomycin, the fluoroquinolones, particularly ciprofloxacin, have been suggested to treat the infections caused by MRSA as well as *Methicillin Sensitive S. aureus* (MSSA).⁷ Ciprofloxacin is a member of 2nd generation fluoroquinolone, which are smaller, more hydrophobic, and less soluble.⁸ Ciprofloxacin inhibits the *S. aureus* growth by targeting the Topoisomerase IV to affect the DNA replication. Topoisomerase IV acts in the decatenation (separation) of interlinked daughter chromosomes to allow in the segregation into daughter cells.⁹ In *S. aureus* the Topo IV is a tetramer composed of GrIA and GrIB, which are the homologous of ParC and ParE, respectively.¹⁰

S. aureus resistance against quinolones emerged soon after its use in 1980s.¹¹ The resistance develops due to the mutations in the topoisomerase IV gene specifically called as quinolone resistance determining region (QRDR).¹²

Resistance to ciprofloxacin in MRSA strains have been widely reported around the globe.¹³ Studies have also suggested the use of ciprofloxacin as a putative risk factor for the emergence of MRSA strains in clinical specimen.¹⁴ Studies have been conducted in various cities of Pakistan to report the Ciprofloxacin resistance in MRSA of clinical origin.^{15,16} A variable level of Ciprofloxacin resistance in MRSA has been shown. However, the data from Hyderabad, Sindh are not available. This study aimed to evaluate the frequency of ciprofloxacin resistant MRSA and MSSA in various clinical *S. aureus* isolates to possibly aid in the customization of antibiotic therapy against MRSA infections and curtail any further development of MRSA strains.

MATERIAL AND METHODS

This cross sectional comparative study was conducted at department of Microbiology, University of Sindh Jamshoro after getting approval from the university. Duration of the study was from January 2015 to January 2016. Manitol Salt Agar, Muller Hinton Agar and Nutrient broth were purchased from Oxide. Ciprofloxacin and Oxacillin impregnated discs (5 μ g and 1 μ g, respectively) were from oxide. Clinical S. aureus isolates recovered from blood, wound, Nose, and urine specimens were obtained from various laboratories in Hyderabad. A total of 164 identified S. aureus isolates were received. The isolates were sub-cultured on a selective and differential medium, i.e., Manitol Salt Agar. Fourteen (14) of which failed to grow either because of delay in sub-culturing or lower inoculum. The conventional microscopic and biochemical test were performed on these isolates for reconfirmation. One hundred and fifty (150) reconfirmed S. aureus isolates were included in this study.

The *S. aureus* were tested for their antibiotic sensitivity against methicillin and 2^{nd} generation fluoroquinolone (i.e., ciprofloxacin) using *Kirby-Bauer* Disc Diffusion method. The liquid cultures of *S. aureus* were prepared in nutrient broth. The overnight culture was diluted to $OD_{600}=0.5$ to meet the McFarlands standard required for disc diffusion method. With the help of a sterile cotton swab the diluted culture was inoculated on Muller Hinton Agar and spread evenly. Commercially available antibiotic discs (Oxoid) were placed on the agar surface. A gentle pressure was applied on the discs to get flat contact with the agar surface. The plates were then incubated at 37 °C for 24 hours. The diameter of the Clear zones (zones of inhibition) observed around the

antibiotic discs were measured according to Clinical and Laboratory Standard Institute (CLSI).

The resistance to Ciprofloxacin in MRSA and MSSA strains were measured both in terms of absolute and relative values. The percentage of strains expressing ciprofloxacin resistance and their relevance to Methicillin resistance and Methicillin sensitivity were the variable of interest. In order to measure the association between ciprofloxacin resistance/ sensitivity and MRSA/MSSA, the Odds Ratios (OR) and 95% Confidence Interval (CI) were calculated manually and using an online statistic calculator where applicable. Fisher's Exact test employing 2×2 contingency table was applied and $p \le 0.05$ was considered significant.

RESULTS

A total of 150 reconfirmed *S. aureus* isolates were included in this study. Fifty-two (30%) of which were identified as MRSA, while 98 (70%) were MSSA. Both MRSA and MSSA strains were also processed for antimicrobial sensitivity against ciprofloxacin (5 μ g) using similar disc diffusion test. Overall 14.6% (n=22) showed resistance against ciprofloxacin. Among the MRSA strains the ciprofloxacin resistance was seen in 25% (n=13) of the isolates, while 9.1% (n=9) of the MSSA isolates showed resistance against ciprofloxacin (Table-1). The OR for ciprofloxacin resistance between MRSA and MSSA was calculated to be 0.30 with 95% CI of 0.12–0.77. A statistically significant level of difference (p=0.014) was demonstrated (Table-2).

The data was also processed for evaluating the frequency of ciprofloxacin resistance among MRSA and MSSA for different categories of clinical samples. The mean age (Year) of the patients with standard deviation for each category of specimen was blood=32.05±10.38. calculated be to nose=22.01±8.3, wound=38.7±12.44 and urine=30.86±8.34. Among various specimens the highest co-resistance (i.e., Ciprofloxacin and Methicillin) was seen in case of blood isolates (37.5%) followed by urine isolates (33.3%) (Table-1). Table-2 shows association between MRSA/MSSA and ciprofloxacin resistance/sensitivity along with OR and *p*-values.

Table-1: Frequency and percentages for ciprofloxacin resistance/sensitivity in MRSA and MSSA from various clinical samples

	SA	Cip [R]	MSSA	MRSA	MRSA-Cip[R]	MRSA-Cip[S]	MSSA-Cip[R]	MSSA-Cip[S]
Specimen	(n)	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)
Blood	19	3 (15.7)	11 (57.8)	8 (42.2)	3 (37.5)	5 (62.5)	0 (0)	11 (100)
Nose	68	10 (14.7)	45 (66.1)	23 (33.8)	4 (17.3)	19 (82.6)	6 (13.3)	39 (86.7)
Wound	27	4 (14.8)	15 (55.5)	12 (44.5)	3 (25)	9 (75)	1 (6)	14 (94)
Urine	36	5 (13.8)	27 (75)	9 (25)	3 (33.3)	6 (66.6)	2 (7.4)	25 (92.6)
Total	150	22 (14.6)	98 (70)	52 (30)	13 (25)	39 (75)	9 (9.1)	89 (90.9)

Key: SA=Staph. aureus, Cip[R]=Ciprofloxacin resistant, Cip[S]=Ciprofloxacin sensitive, MRSA=Methicillin Resistant Staph. aureus, MSSA=Methicillin Sensitive Staph. aureus

Table-2: Association of Ciprofloxacin
resistance/sensitivity with MRSA/MSSA in
isolates from various clinical specimens

13	outaites i		ii ious	o chinical specifii	CIIS
	Cip[R]	Cip[S]	Total	OR [95% CI]	р
		(Over al	11	
MRSA	13	39	52	0.30 [0.12–0.77]	0.01
MSSA	9	89	98	0.30 [0.12-0.77]	
Total	22	128	150		
			Blood		
MRSA	3	5	8	NA	NA
MSSA	0	11	11	18/4	
Total	3	16	19		
			Nose		
MRSA	4	19	23	1.37 [0.34–5.43]	0.72
MSSA	6	39	45	1.57 [0.54-5.45]	
Total	10	58	68		
			Wound	1	
MRSA	3	9	12	4.67 [0.42–52.12]	0.29
MSSA	1	14	15	4.07 [0.42-32.12]	
Total	4	23	27		
			Urine		
MRSA	3	6	9	6.25 [0.85-46.13]	0.08
MSSA	2	25	27	0.25 [0.05-40.15]	
Total	5	31	36		
IZ C'	[D] C'	n '		(C' [C] C' C	

Key: Cip[R]=Ciprofloxacin resistant, Cip[S]=Ciprofloxacin sensitive, MRSA=Methicillin Resistant *Staph. aureus*, MSSA=Methicillin Sensitive *Staph. aureus*, OR=Odds Ratio, CI=Confidence Interval, NA=Not Applicable

DISCUSSION

Ciprofloxacin is one of the fluorinated quinolones and a broad-spectrum antibiotic which is widely prescribed in clinical and hospital settings.¹ However, the widespread use of this antibiotic has led to an emergence of ciprofloxacin-resistant strains.18 In the current study the overall ciprofloxacin resistance of S. aureus was found to be 14%. Categorically about 25% of MRSA strains displayed co-existence of Ciprofloxacin Resistance from various clinical specimens. The Ciprofloxacin Resistance in MSSA was determined to be significantly lower (9.1%). By the early 1990s, ciprofloxacin resistance in many MRSA isolates around the globe was frequently reported.¹⁴ MRSA expressing Ciprofloxacin resistance has also been reported from various cities of Pakistan.^{1,16,19} In 2010 a study conducted in Karachi reported about 67% of Ciprofloxacin Resistance in MRSA.²⁰ An increased ciprofloxacin resistance in MRSA (79%) was reported²¹ from Peshawar through data collected in 2012-2013. Further studies from Peshawar reported increased incidences of ciprofloxacin-methicillin coexistence, i.e., 86% in 2014¹⁵ and 80% in 2016⁵. In 2015 Hizbullah *et al*¹⁹, from Islamabad reported about 25% of MRSA to be resistant to ciprofloxacin. The studies conducted from Hyderabad are scarce however, in 2017 about 37% Ciprofloxacin resistant MRSA was reported.²² The current study also investigated the differences of ciprofloxacinco-existence methicillin in various clinical

specimens. The highest percentage of such a coexistence was seen in case of blood isolates (37.5%) followed by urine isolates 33.3%. The statistical analysis for the determination of association between ciprofloxacin resistance/sensitivity and MRSA/ MSSA did not show any significant associations for various clinical specimens. The overall analysis suggests a variable trait of the ciprofloxacinmethicillin co-existence for different cities of Pakistan. This is perhaps due to the different trends in the prescription, consumption and over the counter availability of ciprofloxacin antibiotic, leading to the selection of resistant mutants among MRSA strains. In recent investigations fluoroquinolones themselves have been suggested to be the risk factors for the emergence of MRSA. A significant correlation between the isolation of MRSA and ciprofloxacin prescriptions has also been reported.²³

CONCLUSION

The results suggest a statistically significant increase of ciprofloxacin resistance in Methicillin Resistant *S. aureus* as compared to Methicillin Sensitive *S. aureus* in clinical samples.

ACKNOWLEDGMENT

We would like to acknowledge Institute of Microbiology, University of Sindh, Jamshoro, Pakistan for providing bench space, glassware and equipment.

REFERENCES

- Sohail M, Latif Z. Prevalence and antibiogram of methicillin resistant Staphylococcus aureus isolated from medical device-related infections; a retrospective study in Lahore, Pakistan. Rev Soc Bras Med Trop 2017;50:680–4.
- Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003;111:1265–73.
- Ashiq B, Tareen AK. Methicillin resistant Staphylococcus aureus in a teaching hospital of Karachi--a laboratory study. J Pak Med Assoc 1989;39:6–9.
- 4. Bukhari SZ, Ahmed S, Zia N. Antimicrobial susceptibility pattern of Staphylococcus aureus on clinical isolates and efficacy of laboratory tests to diagnose MRSA: a multi-centre study. J Ayub Med Coll Abbottabad 2011;23(1):139–42.
- Ullah A, Qasim M, Rahman H, Khan J, Haroon M, Muhammad N, et. al. High frequency of methicillin-resistant Staphylococcus aureus in Peshawar Region of Pakistan. Springerplus 2016;5:600.
- Vola ME, Moriyama AS, Lisboa R, Vola MM, Hirai FE, Bispo PJ, *et al.* Prevalence and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus in ocular infections. Arq Bras Oftalmol 2013;76(6):350–3.
- Forstall GJ, Knapp CC and Washington JA. Activity of new quinolones against ciprofloxacin- resistant staphylococci. Antimicrob Agents Chemother 1991;35:1679–81.
- Chang VS, Dhaliwal DK, Raju L, Kowalski RP. Antibiotic resistance in the treatment of staphylococcus aureus keratitis: a 20-Year Review. Cornea 2015;34(6):698–703.
- 9. Zechiedrich EL, Khodursky AB, Cozzarelli NR. Topoisomerase IV, not gyrase, decatenates products of site-

specific recombination in Escherichia coli. Genes Dev 1997;11:2580-92.

- David CH. Mechanisms of action and resistance of older and newer fluoroquinolones Clin Infect Dis 2000;31(Suppl 2):S24–8.
- Patoli BB, Patoli AA, Kumar D. Trends in antibiotic resistance of Staphylococcus aureus from asymptomatic nasal carriers. J Postgrad Med Ins 2017; 31(4): 343–7.
- Bernard SM, Saira I, Kidon S, Ohgew K, Carl EC, Saeed K. Molecular Characterization of Fluoroquinolone Resistance of Methicillin Resistant Clinical Staphylococcus aureus Isolates from Rawalpindi, Pakistan. Med Res Arch 2015; 2:2.
- Raviglione MC, Boyle JF, Mariuz P, Pablos-Mendez A, Cortes H, Merlo A. Ciprofloxacin-Resistant Methicillin-Resistant Staphylococcus aureus in an Acute-Care Hospital. Antimicrob Agents Chemother 1990;34(11):2050–4.
- Weber SG, Gold HS, Hooper DC, Karchmer AW, Carmeli Y. Fluoroquinolones and the Risk for Methicillin-resistant Staphylococcus aureus in Hospitalized Patients. Emerg Infect Dis 2003;9(11):1415–22.
- Ibrar M, Hissain A, Zeb S, Hasan F, Maqbool F, Israr M. Diversity of Staphylococcus aureus in Clinical Isolates, Their Prevalence and Antimicrobial Resistance in District Peshawar, Pakistan World Appl Sci J 2014;32(11):2213–7.
- Khatoon N, Hussain Bukhari SM, Riaz JR, Sheikh AS, Iqbal A, Naeem S, *et al.* Prevalence of methicillin resistant staphylococcus aureus (MRSA) infection laboratory study at Mayo Hospital Lahore. Biomedica 2002;18:49–52.
- 17. Ali SQ, Zehra A, Naqvi BS, Shah S, Bushra R. Resistance

Address for Correspondence:

Dr. Atif A. Patoli, Institute of Microbiology, University of Sindh, Jamshoro, Pakistan. Cell: +92-311-3005151 Email: atifpatoli@gmail.com

Received: 17 Feb 2018

Reviewed: 20 Apr 2018

Accepted: 22 Apr 2018

pattern of ciprofloxacin against different pathogens. Oman Med J 2010;25;249-8.

- Abdullah FE, Memon AA, Bandukda MY, Jamil M. Increasing ciprofloxacin resistance of isolates from infected urines of a cross-section of patients in Karachi BMC Res Notes 2012;5:696.
- Hizbullah, Ali F, Bahadar S, Shahid Z, Rahimullah, Khalilur-Rahman, *et al.* Antibiotic susceptibility patterns of methicillin resistant staphylococcus aureus at National Institute of Health Sciences, Islamabad, Pakistan World J Zool 2015;10(4):318–22.
- Taj Y, Abdullah FE, Kazmi SU. Current pattern of antibiotic resistance in staphylococcus aureus clinical isolates and the emergence of vancomycin resistance. J Coll Physicians Surg Pak 2010;20(11):728–32.
- Faizan M, Ullah I, Ullah K, Khan I, Jan SU, Ali F, *et al.* Prevalence and Antibiogram of Hospital Acquired MethicIlin Resistant Stapylococcusaureus (HA-MRSA) from a Tertiary Care Hospital in Peshawar, Pakistan. J Bio Mol Sci 2014;2(2):28–37.
- Brohi NA, Noor AA. Frequency of the Occurence of Methicilin Resistant Staphylococcus aureus Infections in Hyderabad, Pakistan. Pak J Anal Environ Chem 2017;18(1):84–90.
- Crowcroft NS, Ronveaux O, Monnet DL, Mertens R. Methicillin resistant Staphylococcus aureus and antimicrobial use in Belgian hospitals. Infect Control Hosp Epidemiol 1999;20(1):31–6.